Partikelschäume auf der Basis von thermoplastischem Polyurethan

Internationale Fachtagung Schaumkunststoffe und Polyurethane 2016
Bad Dürkheim, Ludwigshafen

Dr. Frank Prissok
HIGHEST ENERGY RETURN IN THE RUNNING INDUSTRY

ENERGY RETURN MATERIAL TEST

standard EVA

BOOST
temperature resistance like never before

FROM 40°C TO -20°C

BOOST™ cushioning performs more consistently and doesn’t lose its cushioning properties like standard EVA.
Some Records with Boost + Infinergy™

New York City Marathon, Nov 2013

Geoffrey Mutai, Winner

All over 2-3% more energy return with Boost shoes

Berlin Marathon, 2014
Dennis Kimetto set world record,
Geoffrey Mutai second

Berlin Marathon, 2014
Tirfi Tsegaye
annual world record time
What’s Infinergy™?

- 1st particle foam of thermoplastic polyurethane (TPU)
- High elastic particle foam
 - soft
 - completely closed cells
 - integral foam structure
 - low density
 - like foam filled tennis balls
- High rebound
- Low compression set
- Excellent energy return
- Similar properties over wide range of temperature
Structure of Infinergy™

- Chemistry: nm scale
- Foam cell: μm scale
- Particle: mm scale
- Part welding: cm scale
What’s thermoplastic Polyurethane (TPU)?

TPU is a linear block copolymer based on:

1. Diisocyanates: mainly aromatic isocyanates (MDI, TDI), but also aliphatic isocyanates (HDI, H12-MDI) for transparent and light stable systems

2. High molecular weight polyols, functionality 2, Mw 600-3000, like Polyester- or Polyetherdiols

3. Chain extender (low molecular diol), like Butandiol

Segmented block copolymer:
Morphology on molecular level (schematic)

- Segmented **block copolymers** with an alternating sequence of hard and soft segments.
- Incompatibility of the hard and soft segments: **Two phase structure** of an **amorphous soft phase** with low glass temperature and a high melting, **crystalline hard phase**.
- Low temperature **flexibility** is fixed by the soft phase type and the **hardness** is adjusted by the hard phase amount.
Comparison of Hardness
Thermoplastics and Elastomers

Elastomers
- soft PVC
- Silicons
- EPDM

Thermoplastics
- rigid PVC
- PP
- TPEE
- ABS
- PC

Comparison of Hardness
- Shore D: 45, 55, 65, 75, 85
- Shore A: 50, 70, 90, 110, 120, 130, 140, 150
- Rockwell - R: 20, 30, 40, 50, 60, 70, 80, 90, 95
One Shot TPU Reaction

Elastollan® (TPU)

No foaming step and random hard segment length!
Infinergy™

Production of TPU Particle Foam

Autoclave Technology

1. Impregnation
2. Expansion
3. Work-Up & Sale

Thermoplastic Polyurethane, Raw Material
Density = 1110 g/l

Extruder Technology

Polymer
Blowing agent

Extruder
Density = 130 g/l

密度 = 1110 g/l

密度 = 100 g/l
DMA of Elastollan 11 Series
Foaming TPU in a Vessel

Area of critical Stiffness for Vessel Foaming
TPU Pellets – foamed E-TPU DMA

TPU – E-TPU Stiffness

TPU compact ~ 1100g/l
E-TPU ~ 150g/l same trend, but 30 x softer
Foamed TPU Particle
Comparison Vessel vs Extruder at Particle Center

ESRF Synchrotron Data, Voxel Size = 300nm, Cube Size = 300µm

Achim Besser

1- Vessel center
2- Extruder center
2-Movie

Note: Thin Walls are not resolved in This Movie
Infinergy™ - E-TPU Properties

Important Properties – Overview

(*: detected on parts with $\phi = 220$ g/l)

- **Closed cell rate:** > 95 %
- **Cell gas:** air
- **Rebound**: > 60 %
- **Compression set**: < 5 %
 (ISO 1856, 50 % compression, 22h, 23°C)
- **Compression strength**: > 300 kPa
 (ISO 844, 50 % compression)
- **Tensile strength**: > 700 Pa
 (DIN EN ISO 1798)
- **Elongation at break**: > 200 %
 (DIN EN ISO 1798)

Material Energy Return

- Boost
- 74 %
- 85 %
- 78 %

Special EVA

Image: Adidas running shoe comparison between 0 Kilometers and 500 Kilometers.
Benchmark again System Foams

Hysteresis Profiles of Selected Materials (Thickness 10 mm)

Damping %

- Boost - 190g/L: 24
- PTHF System 350g/L: 44
- high rebound (PTHF) 380g/L: 33
- ULTRA PU - 300g/L: 48
Extraordinary Properties of Infinergy™
Torsion
Easy molding in a steam chest machine (like EPP)

- Moulded parts or sheet goods possible
- Existing technology - optimized by BASF
- Possible Automation
Processing – Bonding with Adhesives

…without pressure
Technology according to produce rubber crump plates (lab scale)

- One component PU-adhesive (binder)
 Very long tack free time
- Two component PU-adhesive (binder)
 Tack free time adjustable
- Molded part with high porosity
 ➔ permeable to water
 reduced mechanical stability

…under pressure

- One component or two component PU-adhesive (binder)
- Molded parts with closed surface and a low internal voids fraction
 ➔ almost impermeable to water
 improved mechanical properties
Processing - Foaming with PU Foam under Pressure

- Combination of particle foam and system foam
- Molded parts with closed surface
- Closed crotch, better mechanical properties
We create chemistry